Subclinical Hypothyroidism



By Gabe Mirkin MD, May 28, 2012  —  Several studies suggest that people who have subclinical hypothyroidism (blood tests demonstrating low thyroid function, but have no symptoms of low thyroid disease) should be given thyroid replacement medication.

THE NORMAL THYROID: The brain produces a hormone called TSH that stimulates the thyroid gland to produce thyroid hormones. To keep the thyroid gland from producing too much thyroid, the thyroid hormone called T4 keeps the brain to from producing more TSH.

TESTS TO DIAGNOSE LOW THYROID FYUCNTION: A blood test called TSH is the most dependable test to diagnose low thyroid function. People with low thyroid function usually have low blood levels of thyroid hormones, and very high levels of the brain hormone, TSH. Doctors diagnose low thyroid function when people have very high levels of the brain hormone, TSH and low levels of thyroid hormones.

SYMPTOMS OF LOW THROID FUNCTION: Most people who have high blood levels of TSH have signs of low thyroid function including tiredness, weakness, weight gain, and decreased deep tendon reflexes.

SUNBCLINICAL HYPOTHYROIDISM: Some people have high blood TSH levels, normal levels of thyroid hormones, and they also have no signs or symptoms of low thyroid function. Doctors call this subclinical hypothyroidism and they usually do not prescribe thyroid replacement pills. Now it appears that these people should also be treated with thyroid hormones, even if they have no symptoms of low thyroid function.

WHY PEOPLE WITH SUBCLINICAL HYPOTHYROIDISM SHOULD BE TREATED: A report from the University of Nebraska shows that people with an abnormal TSH thyroid test should receive thyroid pills, even if they have no symptoms of low thyroid function (1). This study showed that people with low TSH tests and no symptoms can have abnormal cholesterol levels as the only sign of low thyroid function.. See report #G171.1). Treatment with thyroid hormone was associated with fewer heart attacks and death during an eight-year period of observation in 40- to 70-year-old individuals with subclinical hypothyroidism, but not in those who were older than 70(2).

1) Effects of subclinical hypothyroidism and its treatment on serum lipids. Annals of Pharmacotherapy, 2003, Vol 37, Iss 5, pp 725-730 BA Ineck, TMH Ng. Ng TMH, Univ Nebraska, Med Ctr, Dept Pharm Practice,986045 Nebraska Med Ctr, Omaha,NE 68198 USA
2) Archives of Internal Medicine April 24, 2012

Checked 5/26/12

Hypothyroidism is a condition characterized by abnormally low thyroid hormone production. There are many disorders that result in hypothyroidism. These disorders may directly or indirectly involve the thyroid gland. Because thyroid hormone affects growth, development, and many cellular processes, inadequate thyroid hormone has widespread consequences for the body.

This article will focus specifically on hypothyroidism in adults.

What are thyroid hormones?

Thyroid hormones are produced by the thyroid gland. This gland is located in the lower part of the neck, below the Adam’s apple. The gland wraps around the windpipe (trachea) and has a shape that is similar to a butterfly – formed by two wings (lobes) and attached by a middle part (isthmus).

The thyroid gland uses iodine (mostly available from the diet in foods such as seafood, bread, and salt) to produce thyroid hormones. The two most important thyroid hormones are thyroxine (T4) and triiodothyronine (T3), which account for 99% and 1% of thyroid hormones present in the blood respectively. However, the hormone with the most biological activity is T3. Once released from the thyroid gland into the blood, a large amount of T4 is converted into T3 – the active hormone that affects the metabolism of cells.


Thyroid hormone regulation- the chain of command

The thyroid itself is regulated by another gland that is located in the brain, called the pituitary. In turn, the pituitary is regulated in part by the thyroid (via a “feedback” effect of thyroid hormone on the pituitary gland) and by another gland called the hypothalamus.

The hypothalamus releases a hormone called thyrotropin releasing hormone (TRH), which sends a signal to the pituitary to release thyroid stimulating hormone (TSH). In turn, TSH sends a signal to the thyroid to release thyroid hormones. If a disruption occurs at any of these levels, a defect in thyroid hormone production may result in a deficiency of thyroid hormone (hypothyroidism).

Hypothalamus – TRH


Pituitary- TSH


Thyroid- T4 and T3

The rate of thyroid hormone production is controlled by the pituitary gland. If there is an insufficient amount of thyroid hormone circulating in the body to allow for normal functioning, the release of TSH is increased by the pituitary gland in an attempt to stimulate more thyroid hormone production. In contrast, when there is an excessive amount of circulating thyroid hormone, TSH levels fall as the pituitary attempts to decrease the production of thyroid hormone. In persons with hypothyroidism, there is a persistent low level of circulating thyroid hormones.



T3 Thyroid Hormone to Treat Depression


The thyroid is a butterfly-shaped gland in the front of the neck. It produces hormones that control the speed of your metabolism — the system that helps the body use energy. Thyroid disorders can slow down or rev up your metabolism by disrupting the production of thyroid hormones. When hormone levels become too low or too high, you may experience a wide range of symptoms.



By Gabe Mirkin, MD, May 28, 2012  —  . If you are tired much of the time, your doctor will order blood tests for the two thyroid hormones called T3 and T4 and for the brain hormones called TSH and prolactin. If your TSH is high and your prolactin is normal, you are probably hypothyroid and need to take thyroid hormone to give you more energy and prevent heart and blood vessel damage.

Doctors treat people with low thyroid function with thyroid pills called T4 (Levothroid, one brand name is Synthroid). Many doctors think that a person needs only T4 because the thyroid gland makes T4 and then it is converted to T3 in other tissues. However, some people become depressed when they take just T4 and their depression can be cured when they take both thyroid hormones, T3 and T4.

When a depressed patient comes to me and is taking thyroid hormone, T4, I immediately order a blood test called TSH to check if he or she is getting the correct dose. If the TSH is normal, I reduce the dose of T4 by 50% and add a very low dose of T3 (brand name, Cytomel) because it safer to prescribe too low a dose, rather than too high a dose. Overdoses cause shakiness, irritability, irregular heart beats, clots, and osteoporosis. The patient returns in one month for a blood test, TSH, to see if the total thyroid dose is correct. If the TSH is too high, the thyroid dose is too low and I raise the T3 (Cytomel) dose by 5 to 10 m5 each month until the TSH is normal. Then once a year I check TSH blood levels to make sure that the person’s requirements for thyroid hormone are being met.

For example, the usual replacement dose for low thyroid function is 100 micrograms per day. If a depressed patient has a normal TSH, I reduce the T4 dose to 50 mcg/day and add 5 mcg of T3 per day. One month later, if the TSH blood is still too high I raise the T3 dose to 10 or 20 mcg and continue to increase the T3 level each month until the TSH is normal.

Exciting research shows that the thyroid hormone called T3 can help treat depression (1,2,3). Psychotherapy often fails to control depression. Sigmund Freud, the father of psychotherapy, proposed theories about depression, that many psychiatrists do not accept because his writings were his opinions and not presented as scientific data supported by controlled experiments. The dominant theory today is that depression is caused by low brain levels of the neurotransmitters, serotonin and norepinephrine. The drugs such as Paxil, Prozac and Zoloft that treat depression are supposed to raise brain levels of these neurotransmitters. Doctors can also raise brain levels of serotonin by prescribing pills containing T3, a hormone produced by peripheral tissue from T4, which is produced by the thyroid gland. (1) They also prescribe T3 by itself or together with antidepressants. Depression is common among people who have too much or too little thyroid hormone. Doctors usually treat low thyroid function with T4 also known as Levothroid and many people become even more depressed. They treat this depression by prescribing T3 as well as T4.

An article in the Journal of Clinical Psychiatry shows that T3 can be used to treat post traumatic stress disorder, commonly seen in soldiers and people who have been through other causes of terrible emotional trauma (13).

Try to balance T3 and T4 so you will not be taking too much thyroid and harm yourself. 1)If you now take 100 mcg of Levothroid (T4): 2) Lower T4 (Levothroid) to 50 mcg and add Cytomel (T3) 5 mcg each day. 3) One month later, have your doctor draw blood for TSH. 4) If it is normal, you are on the correct dose and should get blood tests TSH once a year. 5) If TSH is too high, increase Cytomel to 10 mcg and hold Levothroid at 50. 6) Draw monthly TSH until it is normal. Keep on raising Cytomel by 5 mcg until TSH is normal.


In some cases, hypothyroidism results from a problem with the pituitary gland, which is at the base of the brain. This gland produces thyroid-stimulating hormone (TSH), which tells the thyroid to do its job. If your pituitary gland does not produce enough TSH, your levels of thyroid hormones will fall. Other causes of hypothyroidism include temporary inflammation of the thyroid or medications that affect thyroid function.



Treating Hypothyroidism

If you are diagnosed with hypothyroidism, your doctor will most likely prescribe thyroid hormones in the form of a pill. This usually leads to noticeable improvements within a couple of weeks. Long-term treatment can result in more energy, lower cholesterol levels, and gradual weight loss. Most people with hypothyroidism will need to take thyroid hormones for the rest of their lives.



With the exception of certain conditions, the treatment of hypothyroidism requires life-long therapy. Before synthetic levothyroxine (T4) was available, desiccated thyroid tablets were used. Desiccated thyroid was obtained from animal thyroid glands, which lacked consistency of potency from batch to batch. Presently, a pure, synthetic T4 is widely available. Therefore, there is no reason to use desiccated thyroid extract.

As described above, the most active thyroid hormone is actually T3. So why do physicians choose to treat patients with the T4 form of thyroid? T3 [liothyronine sodium (Cytomel)] is available and there are certain indications for its use. However, for the majority of patients, a form of T4 [levothyroxine sodium (Levoxyl, Synthroid)] is the preferred treatment. This is a more stable form of thyroid hormone and requires once a day dosing, whereas T3 is much shorter-acting and needs to be taken multiple times a day. In the overwhelming majority of patients, synthetic T4 is readily and steadily converted to T3 naturally in the bloodstream, and this conversion is appropriately regulated by the body’s tissues.

  • The average dose of T4 replacement in adults is approximately 1.6 micrograms per kilogram per day. This translates into approximately 100 to 150 micrograms per day.
  • Children require larger doses.
  • In young, healthy patients, the full amount of T4 replacement hormone may be started initially.
  • In patients with preexisting heart disease, this method of thyroid replacement may aggravate the underlying heart condition in about 20% of cases.
  • In older patients without known heart disease, starting with a full dose of thyroid replacement may result in uncovering heart disease, resulting in chest pain or a heart attack. For this reason, patients with a history of heart disease or those suspected of being at high risk are started with 25 micrograms or less of replacement hormone, with a gradual increase in the dose at 6 week intervals.

Ideally, synthetic T4 replacement should be taken in the morning, 30 minutes before eating. Other medications containing iron or antacids should be avoided, because they interfere with absorption.

Therapy for hypothyroidism is monitored at approximately six week intervals until stable. During these visits, a blood sample is checked for TSH to determine if the appropriate amount of thyroid replacement is being given. The goal is to maintain the TSH within normal limits. Depending on the lab used, the absolute values may vary, but in general, a normal TSH range is between 0.5 to 5.0uIU/ml. Once stable, the TSH can be checked yearly. Over-treating hypothyroidism with excessive thyroid medication is potentially harmful and can cause problems with heart palpitations and blood pressure control and can also contribute to osteoporosis. Every effort should be made to keep the TSH within the normal range.


What are the symptoms of hypothyroidism?

The symptoms of hypothyroidism are often subtle. They are not specific (which means they can mimic the symptoms of many other conditions) and are often attributed to aging. Patients with mild hypothyroidism may have no signs or symptoms. The symptoms generally become more obvious as the condition worsens and the majority of these complaints are related to a metabolic slowing of the body. Common symptoms are listed below:

As the disease becomes more severe, there may be puffiness around the eyes, a slowing of the heart rate, a drop in body temperature, and heart failure. In its most profound form, severe hypothyroidism may lead to a life-threatening coma (myxedema coma). In a severely hypothyroid individual, a myxedema coma tends to be triggered by severe illness, surgery, stress, or traumatic injury. This condition requires hospitalization and immediate treatment with thyroid hormones given by injection.

Properly diagnosed, hypothyroidism can be easily and completely treated with thyroid hormone replacement. On the other hand, untreated hypothyroidism can lead to an enlarged heart (cardiomyopathy), worsening heart failure, and an accumulation of fluid around the lungs (pleural effusion</A.).< p>



How is hypothyroidism diagnosed?

A diagnosis of hypothyroidism can be suspected in patients with fatigue, cold intolerance, constipation, and dry, flaky skin. A blood test is needed to confirm the diagnosis.

When hypothyroidism is present, the blood levels of thyroid hormones can be measured directly and are usually decreased. However, in early hypothyroidism, the level of thyroid hormones (T3 and T4) may be normal. Therefore, the main tool for the detection of hyperthyroidism is the measurement of the TSH, the thyroid stimulating hormone. As mentioned earlier, TSH is secreted by the pituitary gland. If a decrease of thyroid hormone occurs, the pituitary gland reacts by producing more TSH and the blood TSH level increases in an attempt to encourage thyroid hormone production. This increase in TSH can actually precede the fall in thyroid hormones by months or years (see the section on Subclinical Hypothyroidism below). Thus, the measurement of TSH should be elevated in cases of hypothyroidism.

However, there is one exception. If the decrease in thyroid hormone is actually due to a defect of the pituitary or hypothalamus, then the levels of TSH are abnormally low. As noted above, this kind of thyroid disease is known as “secondary” or “tertiary” hypothyroidism. A special test, known as the TRH test, can help distinguish if the disease is caused by a defect in the pituitary or the hypothalamus. This test requires an injection of the TRH hormone and is performed by an endocrinologist (hormone specialist).

The blood work mentioned above confirms the diagnosis of hypothyroidism, but does not point to an underlying cause. A combination of the patient’s clinical history, antibody screening (as mentioned above), and a thyroid scan can help diagnose the precise underlying thyroid problem more clearly. If a pituitary or hypothalamic cause is suspected, an MRI of the brain and other studies may be warranted. These investigations should be made on a case by case basis.


What causes hypothyroidism?

Hypothyroidism is a very common condition. It is estimated that 3% to 5% of the population has some form of hypothyroidism. The condition is more common in women than in men, and its incidence increases with age.

Below is a list of some of the common causes of hypothyroidism in adults followed by a discussion of these conditions.

  • Hashimoto’s thyroiditis
  • Lymphocytic thyroiditis (which may occur after hyperthyroidism)
  • Thyroid destruction (from radioactive iodine or surgery)
  • Pituitary or hypothalamic disease
  • Medications
  • Severe iodine deficiency

Hashimoto’s Thyroiditis

The most common cause of hypothyroidism in the United States is an inherited condition called Hashimoto’s thyroiditis. This condition is named after Dr. Hakaru Hashimoto who first described it in 1912. In this condition, the thyroid gland is usually enlarged (goiter) and has a decreased ability to make thyroid hormones. Hashimoto’s is an autoimmune disease in which the body’s immune system inappropriately attacks the thyroid tissue. In part, this condition is believed to have a genetic basis. This means that the tendency toward developing Hashimoto’s thyroiditis can run in families. Hashimoto’s is 5 to 10 times more common in women than in men. Blood samples drawn from patients with this disease reveal an increased number of antibodies to the enzyme, thyroid peroxidase (anti-TPO antibodies). Since the basis for autoimmune diseases may have a common origin, it is not unusual to find that a patient with Hashimoto’s thyroiditis has one or more other autoimmune diseases such as diabetes or pernicious anemia ( B12 deficiency). Hashimoto’s can be identified by detecting anti-TPO antibodies in the blood and/or by performing a thyroid scan.

Lymphocytic thyroiditis following hyperthyroidism

Thyroiditis refers to inflammation of the thyroid gland. When the inflammation is caused by a particular type of white blood cell known as a lymphocyte, the condition is referred to as lymphocytic thyroiditis. This condition is particularly common after pregnancy and can actually affect up to 8% of women after they deliver. In these cases, there is usually a hyperthyroid phase (in which excessive amounts of thyroid hormone leak out of the inflamed gland), which is followed by a hypothyroid phase that can last for up to six months. The majority of affected women eventually return to a state of normal thyroid function, although there is a possibility of remaining hypothyroid.

Thyroid destruction secondary to radioactive iodine or surgery

Patients who have been treated for a hyperthyroid condition (such as Graves’ disease) and received radioactive iodine may be left with little or no functioning thyroid tissue after treatment. The likelihood of this depends on a number of factors including the dose of iodine given, along with the size and the activity of the thyroid gland. If there is no significant activity of the thyroid gland six months after the radioactive iodine treatment, it is usually assumed that the thyroid will no longer function adequately. The result is hypothyroidism. Similarly, removal of the thyroid gland during surgery will be followed by hypothyroidism.

Pituitary or Hypothalamic disease

If for some reason the pituitary gland or the hypothalamus are unable to signal the thyroid and instruct it to produce thyroid hormones, a decreased level of circulating T4 and T3 may result, even if the thyroid gland itself is normal. If this defect is caused by pituitary disease, the condition is called “secondary hypothyroidism.” If the defect is due to hypothalamic disease, it is called “tertiary hypothyroidism.”

Pituitary injury

A pituitary injury may result after brain surgery or if there has been a decrease of blood supply to the area. In these cases of pituitary injury, the TSH that is produced by the pituitary gland is deficient and blood levels of TSH are low. Hypothyroidism results because the thyroid gland is no longer stimulated by the pituitary TSH. This form of hypothyroidism can, therefore, be distinguished from hypothyroidism that is caused by thyroid gland disease, in which the TSH level becomes elevated as the pituitary gland attempts to encourage thyroid hormone production by stimulating the thyroid gland with more TSH. Usually, hypothyroidism from pituitary gland injury occurs in conjunction with other hormone deficiencies, since the pituitary regulates other processes such as growth, reproduction, and adrenal function. Medications

Medications that are used to treat an over-active thyroid (hyperthyroidism) may actually cause hypothyroidism. These drugs include methimazole (Tapazole) and propylthiouracil (PTU). The psychiatric medication, lithium (Eskalith, Lithobid), is also known to alter thyroid function and cause hypothyroidism. Interestingly, drugs containing a large amount of iodine such as amiodarone (Cordarone), potassium iodide (SSKI, Pima), and Lugol’s solution can cause changes in thyroid function, which may result in low blood levels of thyroid hormone.

Severe iodine deficiency:

In areas of the world where there is an iodine deficiency in the diet, severe hypothyroidism can be seen in 5% to 15% of the population. Examples of these areas include Zaire, Ecuador, India, and Chile. Severe iodine deficiency is also seen in remote mountain areas such as the Andes and the Himalayas. Since the addition of iodine to table salt and to bread, iodine deficiency is rarely seen in the United States.



Eat Only When You Are Active


By Gabe Mirkin MD, May 28, 2012


More than a third of all North Americans are obese and will die prematurely because of their excess fat. WHEN you eat may be even more important than HOW MUCH you eat. Never eat and go to bed. The safest time to eat is just before and after you exercise. Resting after you eat is an invitation for higher blood sugar and insulin levels, more weight gain, and increased risk for diabetes and heart attacks. The current obesity epidemic may well be caused by staying up later at night to snack and watch television.

MICE ALLOWED TO EAT ALL DAY LONG ARE FATTER. Mice that are placed on a high-fat diet gain far more weight when they are supplied with food 24 hours a day than when they can eat only for 8 hours a day, even though they eat the same number of calories per day (Cell Metabolism, published online May 17, 2012). Besides weighing more, the mice that could eat all day long had higher blood sugar and insulin levels, more liver damage, and higher blood levels of CRP, the blood test that measures inflammation.

MICE FED ONLY DURING SLEEPING HOURS ARE FATTER THAN THOSE FED DURING WAKING HOURS. Mice that were allowed to eat only during the 12 hours that they normally sleep gained significantly more weight (48 percent weight increase) than mice eating the same type and amount of food during the 12 hours they are normally awake (20 percent weight increase). Both groups ate the same total amount and type of food and were equally active (Obesity, published online Sept. 3, 2009).

HUMANS WHO SNACK SUFFER MORE DIABETES AND PREMATURE DEATH. Scientists at Karolinska Institutet surveyed 4,000 60-year-old, men and women. Compared to those who ate only breakfast, lunch and dinner, those who snacked between meals had larger waist circumferences and higher blood sugar, insulin, triglyceride and cholesterol levels than people who ate regular meals with less snacking (Obesity, 2008;16 (6):1302). These are all signs associated with metabolic syndrome, diabetes, heart attacks, and premature death.

STAY ACTIVE AFTER YOU EAT. Resting muscles are inactive and draw no sugar from your bloodstream. On the other hand, contracting muscles pull sugar from the bloodstream. They do not even require insulin to do this. If you eat and stand or walk, the contracting muscles can pull sugar from your bloodstream. However, when you eat and sit or lie down, your muscles draw no sugar from your bloodstream and blood sugar levels rise higher to increase risk for cell damage.

• HIGH INSULIN LEVELS: Your pancreas tries to lower the high blood sugar level, so it puts out ever increasing amounts of insulin.

• INCREASED RISK FOR HEART ATTACKS: Insulin constricts the arteries leading to your heart, to increase risk for a heart attack.

• HIGH TRIGLYCERIDES: When muscles are inactive, blood sugar levels rise. The extra sugar goes to your liver and other cells. Once your liver fills up with its own stored sugar called glycogen, it cannot store any more sugar. so all extra sugar is converted to a type of fat called triglycerides.

• LOW GOOD HDL CHOLESTEROL: High triglycerides increase risk for clotting, so your good HDL cholesterol works to save you by carrying triglycerides from your bloodstream to your liver. You use up your good HDL and blood levels of HDL drop.

• FATTY LIVER: The triglycerides accumulate in your liver to cause a fatty liver. A fatty liver cannot clear sugar from your bloodstream.

• DIABETES: Since the liver cannot clear sugar from your bloodstream, you develop even higher blood sugar levels and are now diabetic.

• HEART ATTACKS AND PREMATURE DEATH. Diabetes markedly increases risk for heart attacks, strokes, many cancers, and premature death.


Blood Test for Diabetes Predicts Cancer Risk in Women

By Gabe Mirkin MD, May 28, 2012  —  A blood test that measures blood sugar levels also can be used to predict who is at increased risk for cancer (International Journal of Cancer, April 26, 2012). HBA1C is a blood test that measures how much sugar is stuck on cells. People who have values 5.7 or higher are at increased risk for cancer, even if your doctor has not diagnosed you as having diabetes.

When blood sugar rises too high, sugar sticks to the outside surface of cell membranes. Once there, sugar can never get off. It is converted through a series of chemical reactions to sorbitol that destroys cells. Anything that raises blood sugar appears to increase cancer risk.

To keep your blood sugar low,
1) Avoid being overweight
2) Do not take sugared drinks in any form, including fruit juices, except during prolonged intense exercise
3) Avoid foods with added sugar
4) Avoid fried foods
5) Eat large amounts of fruits and vegetables
6) Do not eat red meat (blocks insulin receptors)
7) Exercise
8) Grow muscle
9) Reduce body fat
10) Keep blood levels of hydroxy-vitamin D above 75 nmol/L



C-Reactive Protein (CRP) and Inflammation



By Gabe Mirkin MD, May 28, 2012  —   Recent research shows that having a high C-Reactive Protein increases your risk of suffering a heart attack or stroke by twice as much as having a high cholesterol. C-Reactive Protein (CRP) is a blood test that measures inflammation, part of the immune reaction that protects you from infection when you injure yourself. It causes redness, pain and swelling, and can damage the inner lining of arteries, and break off clots from arteries to block the flow of blood to cause strokes and heart attacks.

CRP levels fluctuate from day to day, and levels increase with aging, high blood pressure, alcohol use, smoking, low levels of physical activity, chronic fatigue, coffee consumption, having elevated triglycerides, insulin resistance or diabetes, taking estrogen, eating a high protein diet, and suffering sleep disturbances, or depression. If you have none of these known causes, at this time the best ways we know to reduce CRP levels are exercise and a diet that includes omega-3 fatty acids. Statins appear to protect against inflammation as well as to lower cholesterol, but they can cause muscle pain in exercisers.

IF YOU HAVE A HIGH CRP, try to correct the known causes: infection, high blood pressure, alcohol use, smoking, low levels of physical activity, chronic fatigue, coffee consumption, having elevated triglycerides, insulin resistance or diabetes, taking estrogen, eating a high protein diet, and suffering sleep disturbances, or depression.

The most common cause of an elevated CRP is infection. If you have burning on urination, getting up in the night to urinate, urgency when your bladder is full of a feeling that you have to urinate all the time, check for a urinary tract infection. If you have wheezing and a chronic cough or shortness of breath, check for a lung infection. If you have belching and burning in your stomach, get an upper GI series X ray and blood test for Helicobacter. If you have diarrhea, check for an intestinal infection. If you have any of these infections, you have an accepted reason to take antibiotics. Your evaluation should include IGG and IGM antibody blood tests for chlamydia and mycoplasma. If either or both titres are high, I usually recommend taking doxycycline 100 mg twice a day for at least three weeks. Most doctors will not do this because they feel that data aren’t strong enough to warrant antibiotics at this time.