U.S. Department of Health and Human Services
National Cancer Institute (NCI) http://www.nci.nih.gov

For Immediate Release: Wednesday, January 12, 2011

Lung Tumor  – Photograph by Moredun Animal Health Ltd/Science Photo LibraryA scanning electron micrograph provides a color depiction of a small cancerous tumor within a human lung. The tumor is covered in microscopic hairlike structures called microvilli, which enable absorption and secretion. Smoking and other tobacco use are responsible for nearly all cases of lung cancer.

A New NIH study projects survivorship and costs of cancer care based on changes in the US population and cancer trends.

Based on growth and aging of the U.S. population, medical expenditures for cancer in the year 2020 are projected to reach at least $158 billion (in 2010 dollars) – an increase of 27 percent over 2010, according to a National Institutes of Health analysis. If newly developed tools for cancer diagnosis, treatment, and follow-up continue to be more expensive, medical expenditures for cancer could reach as high as $207 billion, said the researchers from the National Cancer Institute (NCI), part of the NIH. The analysis appears online, Jan. 12, 2011, in the Journal of the National Cancer Institute.

The projections were based on the most recent data available on cancer incidence, survival, and costs of care. In 2010, medical costs associated with cancer were projected to reach $127.6 billion, with the highest costs associated with breast cancer ($16.5 billion), followed by colorectal cancer ($14 billion), lymphoma ($12 billion), lung cancer ($12 billion) and prostate cancer ($12 billion).

If cancer incidence and survival rates and costs remain stable and the U.S. population ages at the rate predicted by the U.S. Census Bureau, direct cancer care expenditures would reach $158 billion in 2020, the report said.

However, the researchers also did additional analyses to account for changes in cancer incidence and survival rates and for the likelihood that cancer care costs will increase as new technologies and treatments are developed. Assuming a 2 percent annual increase in medical costs in the initial and final phases of care – which would mirror recent trends – the projected 2020 costs increased to $173 billion. Estimating a 5 percent annual increase in these costs raised the projection to $207 billion. These figures do not include other types of costs, such as lost productivity, which add to the overall financial burden of cancer.

“Rising health care costs pose a challenge for policy makers charged with allocating future resources on cancer research, treatment, and prevention,” said study author Angela Mariotto, Ph.D., from NCI’s Surveillance Research Program. “Because it is difficult to anticipate future developments of cancer control technologies and their impact on the burden of cancer, we evaluated a variety of possible scenarios.”

To project national cancer expenditures, the researchers combined cancer prevalence, which is the current number of people living with cancer, with average annual costs of care by age (less than 65 or 65 and older). According to their prevalence estimates, there were 13.8 million cancer survivors alive in 2010, 58 percent of whom were age 65 or older. If cancer incidence and survival rates remain stable, the number of cancer survivors in 2020 will increase by 31 percent, to about 18.1 million. Because of the aging of the U.S. population, the researchers expect the largest increase in cancer survivors over the next 10 years to be among Americans age 65 and older.

“The rising costs of cancer care illustrate how important it is for us to advance the science of cancer prevention and treatment to ensure that we’re using the most effective approaches,” said Robert Croyle, Ph.D., director, Division of Cancer Control and Population Sciences, NCI. “This is especially important for elderly cancer patients with other complex health problems.”

To develop their cost projections, the authors used average medical costs for the different phases of cancer care: the first year after diagnosis, the last year of life, and the time in between. For all types of cancer, per-person costs of care were highest in the final year of life. Per-person costs associated with the first year after a cancer diagnosis were more varied, with cancers of the brain, pancreas, ovaries, esophagus and stomach having the highest initial costs and melanoma, prostate and breast cancers having the lowest initial-year costs.

These new projections are higher than previously published estimates of direct cancer expenditures, largely because the researchers used the most recent data available – including Medicare claims data through 2006, which include payments for newer, more expensive, targeted therapies which attack specific cancer cells and often have fewer side effects than other types of cancer treatments. In addition, by analyzing costs according to phase of care, which revealed the higher costs of care associated with the first year of treatment and last year of life (for those who die from their disease), the researchers were able to generate more precise estimates of the cost of care.

The researchers used 2005 incidence and mortality data from NCI’s Surveillance, Epidemiology and End Results (SEER) program to estimate cancer prevalence for 2010 and 2020. Population estimates for the United States was obtained from the U.S. Census Bureau’s National Interim Projections for 2006 to 2020. Medical cost estimates were obtained using the SEER-Medicare database which links SEER data to Medicare claims data from the Center for Medicare and Medicaid Services.

More information about these cost projections is available at: <http://costprojections.cancer.gov>

NCI leads the National Cancer Program and the NIH effort to dramatically reduce the burden of cancer and improve the lives of cancer patients and their families, through research into prevention and cancer biology, the development of new interventions, and the training and mentoring of new researchers. For more information about cancer, please visit the NCI Web site at <www.cancer.gov> or call NCI’s Cancer Information Service at 1-800-4-CANCER (1-800-422-6237).

The National Institutes of Health (NIH) — The Nation’s Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit <www.nih.gov>.


REFERENCE: Mariotto AB, Yabroff KR, Shao Y, Feuer EJ, and Brown ML. Projections of the Cost of Cancer Care in the United States: 2010-2020. Jan 19, 2011, JNCI, Vol. 103, No. 2.

From left, Professor Qilin Li, graduate student Michael Liga, alumna Huma Jafry and Professor Andrew Barron have published a paper outlining their method to dramatically improve the effectiveness of a common disinfectant. (Credit: Jeff Fitlow/Rice University)

Rice University, January 12, 2011, (HOUSTON TX)— A simple technique to make a common virus-killing material significantly more effective is a breakthrough from the Rice University labs of Andrew Barron and Qilin Li.

Rather than trying to turn the process into profit, the researchers have put it into the public domain. They hope wide adoption will save time, money and perhaps even lives.

The Rice professors and their team reported in Environmental Science and Technology, an American Chemical Society journal, that adding silicone to titanium dioxide, a common disinfectant, dramatically increases its ability to degrade aerosol- and water-borne viruses.

“We’re taking a nanoparticle that everyone’s been using for years and, with a very simple treatment, we’ve improved its performance by more than three times without any real cost,” said Barron, Rice’s Charles W. Duncan Jr.-Welch Professor of Chemistry and a professor of materials science. Barron described himself as a “serial entrepreneur,” but saw the discovery’s potential benefits to society as being far more important than any thoughts of commercialization.

Barron said titanium dioxide is used to kill viruses and bacteria and to decompose organics via photocatalysis (exposure to light, usually ultraviolet). The naturally occurring material is also used as a pigment in paints, in sunscreen and even as food coloring.

“If you’re using titanium dioxide, just take it, treat it for a few minutes with silicone grease or silica or silicic acid, and you will increase its efficiency as a catalyst,” he said.

Barron’s lab uses “a pinch” of silicon dioxide to treat a commercial form of titanium dioxide called P25. “Basically, we’re taking white paint pigment and functionalizing it with sand,” he said.

Disinfecting a volume of water that once took an hour would now take minutes because of the material’s enhanced catalytic punch, Barron said. “We chose the Yangtze River as our baseline for testing, because it’s considered the most polluted river in the world, with the highest viral content,” he said. “Even at that level of viral contamination, we’re getting complete destruction of the viruses in water that matches the level of pollution in the Yangtze.”

Using a smaller amount of treated P25 takes longer but works just as well, he said. “Either way, it’s green and it’s cheap.”

The team started modifying titanium dioxide two years ago. Li, an assistant professor in civil and environmental engineering whose specialties include water and wastewater treatment, approached Barron to help search for new photocatalytic nanomaterials to disinfect drinking water.

The revelation came when students in Barron’s lab heated titanium dioxide, but it wasn’t quite the classic “aha!” moment. Graduate student and co-author Michael Liga saw the data showing greatly enhanced performance and asked fellow graduate student Huma Jafry what she had done. Jafry, the paper’s first author, said, “I didn’t do anything,” Barron recalled.

When Barron questioned Jafry, who has since earned her doctorate, he discovered she used silicone grease to seal the vessel of P25 before heating it. Subsequent testing with nonsilicone grease revealed no change in P25’s properties, whether the sample was heated or not. Remarkably, Barron said, further work with varying combinations of titanium dioxide and silicone dioxide found the balance between the two at the time of the discovery was nearly spot-on for maximum impact.

Barron said binding just the right amount of silica to P25 creates an effect at the molecular level called band bending. “Because the silicone-oxygen bond is very strong, you can think of it as a dielectric,” he said. “If you put a dielectric next to a semiconductor, you bend the conduction and valence bands. And therefore, you shift the absorption of the ultraviolet (used to activate the catalyst).”

Bending the bands creates a path for electrons freed by the UV to go forth and react with water to create hydroxyl radicals, an oxidant responsible for contaminant degradation and the most significant reactive agent created by titanium dioxide. “If your conduction band bends to the degree that electrons find it easier to pop out and do something else, your process becomes more efficient,” Barron said.

Li saw great potential for enhanced P25. In developed countries, photo reactors designed to take advantage of the new material in centralized treatment plants could more efficiently kill bacteria and inactivate viruses in water supplies while minimizing the formation of harmful disinfection byproducts, she said.

But the greatest impact may be in developing nations where water is typically disinfected through the SODIS method, in which water is exposed to sunlight for its heat and ultraviolet radiation.

“In places where they don’t have treatment plants or even electricity, the SODIS method is great, but it takes a very long time to make water safe to drink,” Li said. “Our goal is to incorporate this photocatalyst so that instead of taking six hours, it only takes 15 minutes.”

Barron wants to spread the good news. “Here’s a way of taking what is already a very good environmental catalyst and making it better,” he said. “It works consistently, and we’ve done batch after batch after batch of it now. The methodology in the paper is the one we routinely use. As soon as we buy P25, we treat it.”

The Robert A. Welch Foundation, the U.S. Navy and the National Science Foundation Center for Biological and Environmental Nanotechnology supported the research.

he new NMR machine will rapidly analyse intact tissue samples from surgery patients.
(Credit: Image courtesy of Imperial College London)

Imperial College London, January 12, 2011  —  Metabolic profiling of tissue samples could transform the way surgeons make decisions in the operating theatre, say researchers at a new laboratory being launched. Scientists at Imperial College London, in partnership with clinicians at Imperial College Healthcare NHS Trust, have installed a high resolution solid state nuclear magnetic resonance (NMR) spectrometer in St Mary’s Hospital. Researchers will use the machine to analyse intact tissue samples from patients taking part in studies, to investigate whether it can ultimately give surgeons detailed diagnostic information while their patients are under the knife.

The Surgical Metabonomics Laboratory will be led by the surgical innovator Professor Lord Ara Darzi and Professor Jeremy Nicholson, a leading researcher in biomolecular medicine and Head of the Department of Surgery and Cancer.

The science of metabonomics, which involves comprehensively measuring the metabolic changes in a person’s body, has been pioneered by the Imperial team over the last 20 years. Techniques from analytical chemistry, such as NMR spectroscopy and mass spectrometry, can allow researchers to measure simultaneously all of the chemicals produced by the body’s metabolism. With knowledge of which molecules correspond to which conditions in the body, this “metabolic fingerprint” can provide a wealth of information about the state of a person’s health.

Metabonomics has previously been applied to samples of bodily fluids such as blood and urine to look for indicators of disease or of how a person might respond to a particular drug. Now the Imperial team have acquired an NMR machine — the first to be installed in a hospital setting — that will analyse solid tissue samples from patients undergoing surgery with Imperial College Healthcare.

The research projects are funded by Imperial’s Comprehensive Biomedical Research Centre. Imperial’s is one of five Comprehensive Biomedical Research Centres in the UK; it was awarded to Imperial College Healthcare NHS Trust by the National Institute for Health Research following a national competition. The new laboratory forms part of the Academic Health Science Centre, a unique partnership between the Trust and Imperial College London, which aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

Professor Darzi, Chairman of the Institute of Global Health Innovation at Imperial College London and an Honorary Consultant Surgeon with Imperial College Healthcare NHS Trust, said: “People respond differently to the physical trauma of surgery, but currently the tools we have to measure how they respond are very limited. Blood tests are slow and they can only measure one chemical component at a time; the doctor simply looks at whether a particular measure has gone up or down. Using NMR, we can simultaneously measure all of the chemicals that the body is producing, and analyse those data to give the surgeon real-time information about the patient’s condition which will help him make decisions.”

Surgeons will be able to take tissue samples and have them loaded straight into the NMR machine without the need to prepare them. The research team think it will be possible to give the surgeon a readily interpretable readout from the analysis within 20 minutes, which would provide information such as whether the tissue is infected or how good its blood supply is. Surgeons might also use the technology to determine exactly which areas of tissue are cancerous.

One project that the team will undertake at the new laboratory is to develop an “intelligent knife.” Surgeons commonly use a technique called electrocautery in operations to seal blood vessels by burning them with a hot iron. By sucking up the smoke produced in this procedure into a mass spectrometer, researchers believe they will be able to tell the surgeon whether the tissue they are burning is healthy, cancerous or infected.

Professor Nicholson, Head of the Department of Surgery and Cancer at Imperial College London, said: “This is a radical change of approach that doesn’t just apply to surgery. We want to be able to provide a metabolic map of the entire patient journey. Before surgery, metabonomics could tell the doctor how risky surgery might be for that patient, or how best to prepare him for surgery. After the operation, metabonomics might help the doctor to monitor the patient’s recovery and prescribe the most suitable drugs or diet. Ultimately we hope to apply this approach to every area of medicine.

“It’s no small task. The analytical chemistry and mathematical modelling involved are challenging, and not everything we try will work. But we hope that within two to three years, we’ll have robust evidence that metabolic profiling can be a really useful tool in surgery.”

Dr James Kinross, a Clinical Lecturer in the Division of Surgery at Imperial College London, said: “People have been talking about personalised medicine for many years now, but so far there have been few meaningful steps towards delivering on that promise. Genome sequencing is currently quite slow and expensive, and it can only tell you so much. Metabonomics takes into account not only what genes somebody has, but also all of the environmental factors that influence their biology, such as their diet, what drugs they’re taking, and what bacteria they have in their body.

“Because of the world class expertise we have here and the close links between surgeons and biomolecular scientists, Imperial is uniquely placed to be able to make major advances in this field. Almost no other institution is in a position to take on the challenges involved.”

To help realise the vision of the new centre to enhance surgical safety and patient care, Imperial has partnered with two of the world’s leading spectroscopic instrument manufacturers, Bruker BioSpin and the Waters Corporation, who will help to develop, optimise and implement NMR and mass spectrometric technologies for real time diagnostics and prognostic modelling.

“By combining bioinformatics and surgical expertise with advanced mass spectrometry technology, Imperial College London is setting a powerful vision for innovative new techniques in the operating room,” said Rohit Khanna PhD, Vice President of Worldwide Marketing for Waters. “At Waters, our success is based upon the ability and imagination of scientists to apply advances in analytical technology to solve their most difficult challenges. Bringing metabolic profiling to the surgical suite is a great example of how a disruptive innovation can potentially improve patient care with a radical new approach. On behalf of all Waters employees, we congratulate Imperial on the launch of the Surgical Metabonomics Laboratory. We look forward to working together on tomorrow’s innovations.”

For Immediate Release: Wednesday, January 12, 2011


Targeted nerve stimulation could yield a long-term reversal of tinnitus, a debilitating hearing impairment affecting at least 10 percent of senior citizens and up to 40 percent of military veterans, according to an article posted in the Jan. 12 online edition of Nature. (Credit: iStockphoto/Lev Dolgatshjov)

NIH-funded researchers were able to eliminate tinnitus in a group of rats by stimulating a nerve in the neck while simultaneously playing a variety of sound tones over an extended period of time, says a study published today in the advance online publication of the journal Nature. The hallmark of tinnitus is often a persistent ringing in the ears that is annoying for some, debilitating for others, and currently incurable. Similar to pressing a reset button in the brain, this new therapy was found to help retrain the part of the brain that interprets sound so that errant neurons reverted back to their original state and the ringing disappeared. The research was conducted by scientists from the University of Texas at Dallas and MicroTransponder Inc., in Dallas.

“Current treatments for tinnitus generally involve masking the sound or learning to ignore it,” said James F. Battey, Jr., M.D., Ph.D., director of the National Institute on Deafness and Other Communication Disorders (NIDCD), which funded a large part of the research. “If we can find a way to turn off the noise, we’ll be able to improve life substantially for the nearly 23 million American adults who suffer from this disorder.”

Tinnitus is a symptom some people experience as a result of hearing loss. When sensory cells in the inner ear are damaged, such as from loud noise, the resulting hearing loss changes some of the signals sent from the ear to the brain. For reasons that are not fully understood, some people will develop tinnitus as a result.

“We believe the part of the brain that processes sounds-the auditory cortex-delegates too many neurons to some frequencies, and things begin to go awry,” said Michael Kilgard, Ph.D., associate professor of behavior and brain sciences at UT-Dallas, and a co-principal investigator on the study. “Because there are too many neurons processing the same frequencies, they are firing much stronger than they should be.”

In addition, the neurons fire in sync with one another and they also fire more frequently when it is quiet. According to Dr. Kilgard, it’s these changing brain patterns that produce tinnitus, which is usually a high-pitched tone in one or both ears, but it may also be heard as clicking, roaring, or a whooshing sound.

Dr. Kilgard, along with co-principal investigator Navzer Engineer, M.D., Ph.D., of MicroTransponder, Inc., and others on the research team first sought to induce changes in the auditory cortex of a group of rats by pairing stimulation of the vagus nerve, a large nerve that runs from the head and neck to the abdomen, with the playing of a single tone. When the vagus nerve is stimulated, it releases acetylcholine, norepinephrine, and other chemicals that help encourage changes in the brain. They wanted to find out if they could induce more brain cells to become responsive to that tone over a period of time.

For 20 days, 300 times a day, researchers played a high-pitched tone, at 9 kilohertz (kHz), to eight rats. At the same time that the tone was played, an electrode delivered a very small electrical pulse to the vagus nerve. The researchers found that the number of neurons tuned to the 9 kHz frequency had jumped by 79 percent in comparison to the control rats.

In a second group of rats, they randomly played two different tones — one at 4 kHz and the other at 19 kHz — but stimulated the vagus nerve only for the higher tone. Neurons tuned to the higher frequency increased by 70 percent while neurons tuned to the 4 kHz tone actually decreased in number, indicating that the tone alone was not enough to initiate the change. It had to be accompanied by vagus nerve stimulation (VNS).

Next, the researchers tested whether tinnitus could be reversed in noise-exposed rats by increasing the numbers of neurons tuned to frequencies other than the tinnitus frequency. A group of the noise-exposed rats with tinnitus received VNS that was paired with different tones surrounding the tinnitus frequency 300 times a day for about three weeks. Rats in the control group received VNS with no tones, tones with no VNS, or no therapy. For both groups, measurements were taken four weeks after noise exposure, then 10 days after therapy began, and one day, one week, and three weeks after therapy ended.

Rats that received the VNS paired with tones showed promising results for each time point after therapy began, including midway through therapy, indicating that the ringing had stopped for the treated rats. Conversely, the data from control rats indicated their tinnitus had continued throughout the testing period. What’s more, the researchers followed two treated and two control rats for an additional two months and found that the treated rats maintained this benefit for 3.5 months after noise exposure, while the controls continued to be impaired.

The researchers also evaluated neural responses in the auditory cortex in these same rats and found that neurons in the treated rats had returned to their normal levels, where they remained. This indicated that the tinnitus had disappeared. However, the control group levels continued to be distorted, indicating that the tinnitus persisted. Overall, the researchers found that the VNS treatment paired with tones had not only reorganized the neurons to respond to their original frequencies, but it also made the brain responses sharper, decreased excitability, and decreased synchronization of auditory cortex neurons.

“The key is that, unlike previous treatments, we’re not masking the tinnitus, we’re not hiding the tinnitus. We are retuning the brain from a state where it generates tinnitus to a state that does not generate tinnitus. We are eliminating the source of the tinnitus,” said Dr. Kilgard.

VNS is currently being used to treat roughly 50,000 people with epilepsy or depression, and MicroTransponder hopes to conduct clinical studies using VNS with paired tones in tinnitus patients.

“The clinical protocol is being finalized now and a pilot study in tinnitus patients will be conducted in Europe in the near future,” said Dr. Engineer, vice president of preclinical affairs at MicroTransponder. “The support of the NIDCD has been essential to allow our research team to continue our work in this important area of tinnitus research.”

MicroTransponder is a neuroscience-based medical device company that is working to develop treatments for a variety of neurological diseases, including tinnitus, chronic pain, and anxiety.

In the meantime, the researchers are currently working to fine-tune the procedure to better understand such details as the most effective number of paired frequencies to use for treatment; how long the treatment should last; and whether the treatment would work equally well for new tinnitus cases in comparison to long-term cases.

Other sponsors of the work include the James S. McDonnell Foundation, St. Louis, Mo.; Norman Hackerman Advanced Research Program, Austin, Texas; Texas Emerging Technology Fund, Austin, Texas; and MicroTransponder, Inc.

For more information about tinnitus, see <www.nidcd.nih.gov/health/hearing/tinnitus.htm>.

For more information about NIDCD programs, see the Web site at <www.nidcd.nih.gov>.

The National Institutes of Health (NIH) — The Nation’s Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit <www.nih.gov>.

Scientists have found that the pleasurable experience of listening to music releases dopamine,
a neurotransmitter in the brain important for more tangible pleasures associated with rewards
such as food, drugs and sex. (Credit: iStockphoto)

ScienceDaily.com, January 12, 2011 — Scientists have found that the pleasurable experience of listening to music releases dopamine, a neurotransmitter in the brain important for more tangible pleasures associated with rewards such as food, drugs and sex. The new study from The Montreal Neurological Institute and Hospital — The Neuro at McGill University also reveals that even the anticipation of pleasurable music induces dopamine release [as is the case with food, drug, and sex cues]. Published in the journal Nature Neuroscience, the results suggest why music, which has no obvious survival value, is so significant across human society.

The team at The Neuro measured dopamine release in response to music that elicited “chills,” changes in skin conductance, heart rate, breathing, and temperature that were correlated with pleasurability ratings of the music. ‘Chills’ or ‘musical frisson’ is a well established marker of peak emotional responses to music. A novel combination of PET and fMRI brain imaging techniques, revealed that dopamine release is greater for pleasurable versus neutral music, and that levels of release are correlated with the extent of emotional arousal and pleasurability ratings. Dopamine is known to play a pivotal role in establishing and maintaining behavior that is biologically necessary.

“These findings provide neurochemical evidence that intense emotional responses to music involve ancient reward circuitry in the brain,” says Dr. Robert Zatorre, neuroscientist at The Neuro. “To our knowledge, this is the first demonstration that an abstract reward such as music can lead to dopamine release. Abstract rewards are largely cognitive in nature, and this study paves the way for future work to examine non-tangible rewards that humans consider rewarding for complex reasons.”

“Music is unique in the sense that we can measure all reward phases in real-time, as it progresses from baseline neutral to anticipation to peak pleasure all during scanning,” says lead investigator Valorie Salimpoor, a graduate student in the Zatorre lab at The Neuro and McGill psychology program. “It is generally a great challenge to examine dopamine activity during both the anticipation and the consumption phase of a reward. Both phases are captured together online by the PET scanner, which, combined with the temporal specificity of fMRI provides us with a unique assessment of the distinct contributions of each brain region at different time points.”

This innovative study, using a novel combination of imaging techniques, reveals that the anticipation and experience of listening to pleasurable music induces release of dopamine, a neurotransmitter vital for reinforcing behavior that is necessary for survival. The study also showed that two different brain circuits are involved in anticipation and experience, respectively: one linking to cognitive and motor systems, and hence prediction, the other to the limbic system, and hence the emotional part of the brain. These two phases also map onto related concepts in music, such as tension and resolution.

This study was conducted at The Neuro and at the Centre for Interdisciplinary Research in Music, Media, and Technology (CIRMMT). The research was supported by the Canadian Institutes of Health Research, the Natural Science and Engineering Research Council, and the CIRMMT.

Journal References:

1. Valorie N Salimpoor, Mitchel Benovoy, Kevin Larcher, Alain Dagher, Robert J Zatorre. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 2011; DOI: 10.1038/nn.2726

2. Valorie N. Salimpoor, Mitchel Benovoy, Gregory Longo, Jeremy R. Cooperstock, Robert J. Zatorre. The Rewarding Aspects of Music Listening Are Related to Degree of Emotional Arousal. PLoS ONE, 2009; 4 (10): e7487 DOI: 10.1371/journal.pone.0007487