Gaming Evolves

Kalliopi Monoyios
In Spore, players experience life across billions of years, taking cues from evolutionary biology.

By Carl Zimmer, September 2, 2008, The New York Times — By day, Thomas Near studies the evolution of fish, wading through streams in Kentucky and Mississippi in search of new species. By night, Dr. Near, an assistant professor at Yale, is a heavy-duty gamer, steering tanks or playing football on his computer. This afternoon his two lives have come together.

On his laptop swims a strange fishlike creature, with a jaw that snaps sideways and skin the color of green sea glass. As Dr. Near taps the keyboard, it wiggles and twists its way through a busy virtual ocean. It tries to eat other creatures and turns its quills toward predators that would make it a meal.

The chairman of Dr. Near’s department, Richard Prum, watches him play and worries about his reckless lunges.

“You’re just attacking them?” he asks as Dr. Near tries to eat a fat purple worm that looks too dangerous to bother.

“If you kill them, you unlock their parts,” Dr. Near explains. But then the purple worm sticks its syringelike mouth into Dr. Near’s beast and begins to drain its innards. “Uh-oh, I’m about to die,” he says. The screen fades to black.

The game begins with single-cell microbes and follows them through their evolution into intelligent multicellular creatures, like the Tiktaalik

The next time, Dr. Near’s luck changes. He gains enough points to move to the next level of the game. His creature grows a brain. “Oh man, it’s like I graduated college,” he says. Dr. Near can now alter his creature. He stretches the body to give it a neck. He adds a pair of kangaroo-like legs.

His creature — or, rather, a swarm of his creatures — charge out of the ocean and onto land. Dr. Near pushes back the laptop as his creatures find a place to make their nest and lay eggs. “So that’s pretty cool,” he says with a grin not often seen on a professor.

Dr. Near and Dr. Prum have spent a few evenings testing out Spore, one of the most eagerly anticipated video games in the history of the industry. After years of rumors, the game goes on sale Friday. Spore’s designer, Will Wright, is best known for creating a game called the Sims in 2000. That game, which let players run the lives of a virtual family, has sold 100 million copies. It is the best-selling computer game franchise of all time.

Spore, produced by Electronic Arts, promises much more than the day-to-day adventures of simulated people. It starts with single-cell microbes and follows them through their evolution into intelligent multicellular creatures that can build civilizations, colonize the galaxy and populate new planets.

Unlike the typical shoot-them-till-they’re-all-dead video game, Spore was strongly influenced by science, and in particular by evolutionary biology. Mr. Wright will appear in a documentary next Tuesday on the National Geographic Channel, sharing his new game with leading evolutionary biologists and talking with them about the evolution of complex life.

Evolutionary biologists like Dr. Near and Dr. Prum, who have had a chance to try the game, like it a great deal. But they also have some serious reservations. The step-by-step process by which Spore’s creatures change does not have much to do with real evolution. “The mechanism is severely messed up,” Dr. Prum said.

Nevertheless, Dr. Prum admires the way Spore touches on some of the big questions that evolutionary biologists ask. What is the origin of complexity? How contingent is evolution on flukes and quirks? “If it compels people to ask these questions, that would be great,” he said.

Evolution may seem impossible to capture in a computer. It is a hugely complicated process by which millions of individuals change over millions of years, as thousands of genes mutate and are spread by natural selection and other forces. Yet scientists have managed to distill some of the most important features of evolution into the language of mathematics.

In the early 1900s, mathematicians figured out how to represent a population of organisms in simple equations. They used those equations to show how natural selection can spread some genes from one generation to the next. Their work transformed the study of evolution into a modern, rigorous science.

Today, mathematicians use far more sophisticated equations to analyze evolution. And some of their most important insights have come from treating evolution like a giant game. Organisms can evolve different strategies to survive, in the same way game players can choose different strategies to win the most points in a game. Using a branch of mathematics called game theory, scientists can figure out if natural selection will favor a strategy over all others, or if it brings them into a stable balance. Game-theory models have shed light on the evolution of things like human cooperation and the deadly relationship of parasites and their hosts.

Today’s computers make it vastly easier for scientists to build these models. They have also allowed researchers to study evolution by building digital organisms. Scientists at Michigan State University and the California Institute of Technology, for example, have developed software called Avida that allows tiny computer programs to behave like real organisms. They make copies of themselves and mutate (randomly changing lines of programming code).

As the programs process more information in more powerful ways, the mutations are favored by a digital version of natural selection. The Avida team has published a string of papers in leading scientific journals on their experiments, testing ideas about complexity, mass extinctions and even the evolutionary benefits of sex.

Computers have also made it possible for scientists to build simple simulations to help people understand the principles of evolution. This year, for instance, Ralph Haygood, a postdoctoral researcher at Duke University, built a Facebook application called Evarium that lets users watch flowerlike creatures drift around a box, attracting one another with their colors. They mate and shuffle traits in their offspring, which then go through the same cycle. Players can control how quickly traits mutate and how strongly the organisms are attracted to some traits and not others. Or they can just watch the creatures change each time they open their Facebook page.

Mr. Wright came to the challenge of an evolution game with a long track record of simplifying complex systems without losing the feel of reality. He first came to fame in 1989 with SimCity, a game that allowed players to build and oversee a city. He simplified the workings of cities so that the slow personal computer of the late 1980s could simulate them. But he included enough feedback loops between elements of cities — like tax rates, incomes and traffic jams — to give SimCity the unpredictable complexity of real cities.

Mr. Wright followed the success of SimCity with a string of open-ended games, like SimAnt (a simulated ant colony) and SimMars (a simulated Red Planet players could make habitable). Around the time he released the Sims, he began to contemplate an all-encompassing game. At first, he called it SimEverything.

The game, which he eventually renamed Spore, would give players an experience of life and the universe across billions of years, from microscopic creatures to interstellar civilizations. “There were deep motivations in the early phase from the work of a lot of evolutionary biologists, like Richard Dawkins and Edward Wilson,” Mr. Wright said in a telephone interview.

Mr. Wright wanted Spore to communicate some of the grand patterns of evolution. But he did not want players to spend a million years waiting for something interesting to happen. He also did not want the game to look like an abstract cloud of drifting spots.

“I spent a fair amount of time going around to talk to scientists here and there,” Mr. Wright said. “You have to explore a huge amount to figure what 20 percent will be cool and fun for a game.”

One thing Mr. Wright and his colleagues decided Spore should reflect was evolution’s ability to produce life’s staggering diversity. “We wanted to convey the sense that evolution can bring up a surprising diversity of weird, interesting, strange things,” he said.

The game begins with a meteorite crashing into a planet, sowing its oceans with life and organic matter. Players control a simple creature that gobbles up bits of debris. They can choose to eat other creatures or eat vegetation or both. As the creature eats and grows, it gains DNA points, which the player can use to add parts like tails for swimming or spikes for defense. Once the creature has gotten big and complex enough, it is ready for the transition to land.

On land, the creatures can grow legs, wings and other new parts. And it is at this point that some of Spore’s features really shine. Mr. Wright’s team has written software that can rapidly transform creatures in an infinite number of ways, as players add parts and alter their size, shape and position.

This summer, as part of the buildup before the release of Spore, Electronic Arts offered software for building new creatures on its Web site. So far, people have built more than three million creatures. Electronic Arts uses that growing zoo to populate each player’s planets with life.

Neil Shubin, a paleontologist at the University of Chicago, was enchanted when Mr. Wright came to show off Spore to him. Dr. Shubin’s own research has helped reveal how real evolution recycles and modifies pre-existing biology to produce different body plans. In 2006 Dr. Shubin and his colleagues reported the discovery of a 370-million-year-old fossil called Tiktaalik that illuminates our ancestors’ transition from sea to land. It offers clues to how our hands and feet evolved from swimming fins.

Dr. Shubin found that Spore gave players a feel for how evolution uses the same basic tool kit to produce different body plans. “Playing the game,” he said, “you can’t help but feel amazed how, from a few simple rules and instructions, you can get a complex functioning world with bodies, behaviors and whole ecosystems.”

Spore also mimicked evolution in another way that pleased Dr. Shubin. “Will asked me, ‘Why did creatures evolve to walk on land?’ ” he recalled. “I mentioned that the freshwater ecosystems of the Late Devonian were pretty predator-intensive. He smirked.”

Mr. Wright built a Tiktaalik with Dr. Shubin’s help. “We let him swim around in a Spore Devonian world. And every time our little silicon Tiktaalik went in the deep water, a huge creature ate him in one bite. Tiktaalik crawled on land and thrived,” Dr. Shubin said.

Spore embodies another major theme of evolutionary biology: evolution is not a simple kill-or-be-killed affair. If a Spore player ends up with a carnivorous creature, it will certainly do its fair share of killing. But it will not make it very far unless it makes alliances. In Spore, creatures bond by dancing, wiggling and singing. Taking the time to bond allows players to move in packs and herds, which do a better job of fighting off predators and attacking prey.

“You always wonder why life tends to become more complex over time,” Mr. Wright said. “If you look at this balance between cooperation and competition, at almost every level it explains it neatly. You have agents competing at some level. The agents might be cells. At some point the cells can group together and work collectively and outcompete the other ones that are not cooperating. Then competition jumps to the next level. At every level you have to have the right balance between co-op and comp. That balance is driving the organizational complexity.”

Even as scientists praise Spore, they voice concerns about how the game does not match evolution. In the real world, new traits evolve as mutations arise and spread gradually through entire populations. Winning Spore’s DNA points does not work even as a remote metaphor.

“I do hope that it doesn’t confuse people as to what evolution is all about,” said Charles Ofria, a computer scientist at Michigan State University and a creator of Avida.

Spore may also mislead players with the way it is set up as a one-dimensional march of progress from single-cell life to intelligence. Evolution is more like a tree than a line, with species branching in millions of directions. Sometimes species become more complex, and sometimes they become less so. And sometimes they do not change at all. “There’s no progressive arrow that dominates nature,” Dr. Prum said.

These caveats notwithstanding, Dr. Near hopes that Spore prompts people to think about the evolutionary process. “This may be totally off about how evolution works, but I’d much rather be dealing with a student who says, ‘O.K., I have no problem with evolution; I think about it the same way I think about gravity.’ If it does that, it’ll be great.”

Mr. Wright said he had been hearing similar reactions from other scientists. “I find that scientists are incredibly open and excited that we can portray this stuff in games, even if it’s not perfectly accurate,” he said. “It’s manure to seed future scientists.”

Dr. Shubin said: “The differences between Spore and nature do not bother me. I see Spore for what it is: a game. And it is a game in the best sense of the word. It is not identical to nature, but it is a world that evolves, that changes and where the players are part of those processes.”

This article has been revised to reflect the following correction:

Correction: September 4, 2008
An article on Tuesday about a new computer game, Spore, referred incorrectly to the popularity of The Sims, an earlier game from the same designer. The Sims is the best-selling computer game franchise ever, not the best-selling video game franchise.

Cancer signs: This image shows the active site of the IDH1 enzyme. Scientists have discovered that mutations in the gene encoding this enzyme are found in the tumors of patients with the brain cancer glioblastoma.
Credit: Parsons et al

New studies paint an exhaustively detailed picture of two deadly cancers.

By Lauren Gravitz, September 5, 2008, MIT Technology Review – In three new studies that could redefine how cancer is viewed, researched, and treated, scientists have created a detailed map of the genetic mutations that underlie two of the deadliest forms of the disease: pancreatic cancer and glioblastoma, the type of brain tumor that Senator Edward Kennedy was diagnosed with this past spring. The new findings are the first steps in the huge task of mapping the genomes of cancer, as researchers work to learn about cancers from the ground up.

Scientists have known for decades that cancer develops in response to genetic changes that cause cells to grow and divide uncontrollably. But uncovering each of these changes, and understanding how they lead to disease, is a Herculean task–one that involves sequencing and analyzing upward of 100 different kind of tumors, with hundreds of different patient samples of each. And while some believe that systematically cataloging the mutations could provide unprecedented insight into fighting or even preventing cancers, others believe that the high cost of such research might not be worth the rewards. These papers provide the first glimpse at what the rewards could be.

One paper, published online in Nature, is the first study born from data gathered by the publicly funded Cancer Genome Atlas (TCGA), an initiative created to use large-scale genome sequencing to find and map different cancers’ genetic aberrations. Lynda Chin and Matthew Meyerson, both at the Dana-Farber Cancer Institute, in Boston, analyzed more than 200 glioblastoma tumors for genetic changes (such as the number of copies of each protein-coding gene present in the sample, and whether these genes have been turned off through a process called methylation), and they also analyzed 600 genes already implicated in the disease. Their results confirmed known culprits and revealed previously unknown changes in three major genes: two known tumor suppressors (NF1 and ERBB2), and one that is newly associated with cancer (PIK3R1) and could potentially be targeted by drugs already in development.

The other two studies–the fruits of a private cancer genome project headed by a trio of researchers at Johns Hopkins University, in Baltimore–analyzed far fewer tumors at a far greater level of detail. Published online in Science, these papers examine 22 pancreatic tumors and 24 glioblastomas for gene copy number and gene expression, as well as the sequences of just about every single one of their more than 20,000 protein-encoding genes. The researchers found an average of around 60 genetic changes per tumor, but they also discovered that most of those mutations acted on a core set of just 12 cellular pathways.

These pathways may be central to future drug development. “It may be more productive to screen for drugs that act against the core pathways,” says Bert Vogelstein, one of the project heads at Johns Hopkins. “By targeting the pathways, it’s possible that new drugs could be effective against a much greater fraction of tumors.”

One finding in particular by the Johns Hopkins group shows the value of the genome-wide approach. Victor Velculescu, who led the Hopkins glioblastoma study, and his colleagues discovered that a mutation in one gene differentiates one subset of glioblastomas from another in a disease that researchers had always believed was quite homogeneous. The gene, called IDH1, had never before been implicated in any cancer. But the IDH1 mutation occurred in 12 percent of glioblastoma patients, and those people were, on average, 20 years younger and survived significantly longer than patients without the mutation. This finding–perhaps the most instantly clinically relevant piece of the three studies released today–is one that the scientists hope could soon be used to help physicians better predict their patients’ survival. The finding could also help clinicians determine if existing therapies might be more effective on this brand of glioblastoma and ultimately help create treatments directed specifically at the IDH1 pathway.

Cancer researchers welcome the flood of data gleaned from both approaches. “I’m just glad the information is in the till,” says Paul Mischel, a neuropathologist at the University of California, Los Angeles, who specializes in glioblastoma therapy development and application. “These studies provide the first really well-delineated set of road maps.” Chin and Velculescu hope that sequencing costs will soon drop low enough to allow them to combine the two techniques, sequencing large numbers of genes in many tumors.

The studies have also revealed to scientists looking to treat these diseases just how difficult their challenge really is. “For the first time, these are giving you the complete picture of these two cancer types,” Velculescu says. “This is important, because if we ever want to cure cancer, we have to know what’s wrong with it. And unfortunately, what appears to be wrong with most cancers is more complicated than we may have anticipated.”

Credit: Antonia Reeve / Photo Researchers, Inc.

MicroRNA in blood could help doctors detect cancer and other conditions.

By Courtney Humphries, September 5, 2008, MIT Technology Review – Tiny pieces of RNA are turning out to play a big role in health. Over the past few years, scientists have found that these molecules, called microRNAs, are involved in key functions in cells and are linked to the development of certain cancers and other diseases. A new study led by scientists at Nanjing University, in China, finds that microRNAs circulating in blood can serve as a molecular “fingerprint” for cancers and diabetes. The findings raise the possibility that a simple blood test could help clinicians tailor treatments to individual patients.

MicroRNAs are tiny strands of RNA molecules that do not code for proteins as messenger RNAs do; instead, they bind to messenger RNA to help control the synthesis of proteins. Over the past few years, studies have found that microRNAs affect the way that genes are expressed in cells, and have linked specific microRNAs to particular cancers. Studies in recent months have shown that individual microRNAs associated with prostate cancer and lymphoma can be found circulating in the bloodstream. This would be a boon to oncologists, who currently rely primarily on expensive imaging and invasive biopsies.

In a new paper, published in Cell Research, scientists give the first comprehensive tally of microRNAs in blood serum and identify patterns of microRNAs that distinguish patients with two kinds of cancer and diabetes from healthy subjects. The researchers used sequencing technology to identify the type and levels of microRNAs in the blood serum of healthy people, and they found that these measurements are consistent from individual to individual. Next, they looked at the types of microRNAs and the levels in patients with lung cancer, colorectal cancer, and diabetes. For each condition, the researchers identified a unique pattern of microRNA expression that differed from that of healthy people.

Lead author Chen-Yu Zhang says that many scientists were surprised to discover that microRNA can be measured in blood serum, because the blood also contains ribonuclease, an enzyme that digests RNA. Although it’s not yet clear how microRNAs escape destruction and persist in the blood, Zhang says, “whatever the reason, microRNAs are stable in the serum and are resistant to ribonuclease digestion.”

Frank Slack, a molecular biologist at Yale University, who was not involved in the study, says that microRNA molecules have been causing a stir among cancer researchers because “their expression patterns seem to give a pretty accurate indication of what type of cancer a patient might have, as well as indicating the potential prognosis of that patient.” In fact, microRNAs seem to provide a more specific indicator of cancer type than measuring all the genes expressed in a tumor. However, the usefulness of measuring microRNA is limited if it requires sampling tumors directly. Scientists have been hunting for ways to detect cancer more quickly and easily using biomarkers in the blood or other bodily fluids. Slack says that recent studies showing that microRNAs can be detected in blood are exciting because they suggest that “you might be able to get that same information just from getting the blood from that patient.”

Furthermore, Slack says, the Cell Research paper shows that microRNAs have patterns in diabetes and could be useful in other diseases that involve similar changes to microRNA. He says that such a blood marker would be particularly desirable in “diseases where you don’t know the site of action or the lesion in the body.” Even in a condition like diabetes, for which biomarkers exist, microRNAs might provide missing information, such as predicting a person’s susceptibility, Slack adds.

Zhang says that spotting several different microRNAs specific to a disease would offer an advantage over relying on one or two biomarkers, which are not always present in individual cases. Such a biomarker could also be used to track a disease’s progression over time and to evaluate a patient’s response to a treatment. Zhang says that a patient’s specific pattern of blood microRNAs could also serve as the basis for more personalized medicine, helping doctors distinguish between different forms of a disease or patients who are likely to respond differently to a drug.

The current study relied on expensive sequencing technologies, but Zhang says that eventually, microarrays could measure key microRNAs in the blood much more cheaply–tests that biotech companies are already beginning to develop. Slack says that microRNA is “a new kind of marker that will be emerging in the next decade or so” but that controlled studies are needed to see whether microRNA patterns provide reliable predictions about individual patients and also apply to a wide range of diseases.

Marc Baldo poses with a collection of glass sheets coated with light-emitting organic dyes. The dyes absorb light and reëmit it into the glass, which channels it to the edges of the sheets. Baldo uses the devices to concentrate sunlight, making solar power cheaper.
Credit: Porter Gifford

A new way to concentrate sunlight could make solar power competitive with fossil fuels

By Kevin Bullis, September/October 2008, MIT Technology Review – In his darkened lab at MIT, Marc Baldo shines an ultraviolet lamp on a 10-centimeter square of glass. He has coated the surfaces of the glass with dyes that glow faintly orange under the light. Yet the uncoated edges of the glass are shining more brightly–four neat, thin strips of luminescent orange.

The sheet of glass is a new kind of solar concentrator, a device that gathers diffuse light and focuses it onto a relatively small solar cell. Solar cells, multilayered electronic devices made of highly refined silicon, are expensive to manufacture, and the bigger they are, the more they cost. Solar concentrators can lower the overall cost of solar power by making it possible to use much smaller cells. But the concentrators are typically made of curved mirrors or lenses, which are bulky and require costly mechanical systems that help them track the sun.

Unlike the mirrors and lenses in conventional solar concentrators, Baldo’s glass sheets act as waveguides, channeling light in the same way that fiber-optic cables transmit optical signals over long distances. The dyes coating the surfaces of the glass absorb sunlight; different dyes can be used to absorb different wavelengths of light. Then the dyes reëmit the light into the glass, which channels it to the edges. Solar-cell strips attached to the edges absorb the light and generate electricity. The larger the surface of the glass compared with the thickness of the edges, the more the light is concentrated and, to a point, the less the power costs.

Baldo, an associate professor of electrical engineering, published his findings recently in Science. On their basis, he projects that his solar concentrators could be made big enough for the electricity they help generate to compete with electricity from fossil fuels. Indeed, says Baldo, panels equipped with the concentrators “could be the cheapest solar technology.”

Secret Ingredient
The process for making Baldo’s solar concentrators begins down the hall in another lab. A postdoctoral researcher, Shalom Goffri, takes several bottles filled with colorful dye powders from a cabinet and measures the powders into small vials. Some of the dyes were developed for use in car paints; others have been used in organic light-emitting diodes. Both types of dyes can last for years in the sun, a quality essential for solar concentrators. Once he has measured out the powders, Goffri adds a solvent to each to make a liquid ink.

The next steps take place inside a sealed box, so that Goffri doesn’t inhale the solvents used to make the dye. He reaches into the box, using thick black gloves mounted in its glass front, and carefully mixes together different inks. Determining the right combination of inks solved a fundamental problem that researchers have encountered with this type of solar concentrator. If the glass sheet is coated with a dye that absorbs sunlight in, say, the green-to-blue range of the solar spectrum and emits light of the same wavelength, the emitted light will be quickly reabsorbed by the dye, and little of it will ever reach the edge of the glass. The problem has limited the size of these solar concentrators, since the further the light needs to travel to the edges, the less of the light will make it.

By using certain combinations of dyes interspersed with other light-absorbing molecules, Baldo makes coatings that absorb one color but emit another. The emitted light is not quickly reabsorbed by the coatings, so more of it reaches the edges of the glass sheet.

The coatings that Goffri is making absorb ultraviolet through green light and emit orange light. Once Goffri has prepared the final mixture, he pours a small amount on a 10-centimeter-wide glass square–the largest that can fit inside a device that spins the glass at 2,000 revolutions per minute to spread the ink evenly. Within a minute or two, the solvent has evaporated and the process is finished. The solar concentrator, with its coating of orange dye, is complete.

The Prototype
To generate electricity, Goffri connects the solar concentrator to solar cells. He’s making what is called a tandem solar module, a type of solar panel that uses two different kinds of cells to capture more of the energy in sunlight than a single kind could. Different wavelengths of sunlight have different amounts of energy; ultraviolet light has the most and infrared the least. Solar cells are optimized for particular colors. One designed to convert infrared light into electricity, for example, will convert most of the energy in blue light into waste heat. Likewise, red light will pass through a solar cell optimized for high-energy blue light without being absorbed. Ideally, solar cells for different wavelengths would be used in combination to collect the most sunlight, but this approach is often too expensive to be practical.

Baldo’s concentrators offer an inexpensive way to combine solar cells optimized for different wavelengths of light: different colored coatings can be paired with different types of solar cells in the same device. To make a prototype, Goffri takes a type of solar cell well suited to high-energy colors and glues it to the inside of a plastic frame; then he slides the concentrator into the frame so that its edges line up with the cells. The concentrator captures ultraviolet, blue, and green light and emits orange light that the cells convert into electricity. The lower-energy light, from the red and infrared end of the spectrum, passes through the solar concentrator to the next layer. In the prototype, the next layer is a full-size, conventional silicon solar cell that isn’t paired with a solar concentrator.

The prototype, Baldo says, can convert almost twice as much energy from sunlight into electricity as a conventional cell can, provided that the concentrator is roughly 30 centimeters square. This translates to a 30 percent decrease in the cost of solar electricity.

In the future, the cost savings can be much higher, Baldo believes. He doesn’t use a concentrator for the infrared light because, so far, no good dyes for capturing those wavelengths exist. But he is confident that such dyes can be developed. When that happens, he will be able to add a second concentrator, for little additional cost, and replace the full-size silicon solar cell with smaller, cheaper cells attached to the concentrators’ edges. If the cost of photovoltaics drops over the next several years, as expected, this setup could make solar power about as cheap as electricity from coal, he says.

There’s more work to be done in the lab, such as improving the range of colors the concentrators can absorb, which will make it possible to tailor them to specific slices of the spectrum. But Baldo says that it’s time to start moving the technology out of the lab and into the market. He and his colleagues have founded a company called Covalent Solar, which is starting to raise money. The company, based in Cambridge, MA, plans to have its first products–probably tandem solar modules–available within three years.

Kevin Bullis is Technology Review’s energy editor.

Follow the Graphics, below:


1) To begin making the solar concentrators, a researcher measures powdered organic dyes into small vials, where they will be mixed with solvents to make ink.

Credit: Porter Gifford


2) Next, various inks are mixed together and poured onto a 10-centimeter glass sheet perched on a spin-coating machine. This is done in a sealed box, to protect the researchers from inhaling the solvent.

Credit: Porter Gifford

Your browser may not support display of this image.

3) When the glass is spun at 2,000 revolutions per minute, the ink spreads evenly and the solvent evaporates. The concentrator is complete and ready to be connected to solar cells.

Credit: Porter Gifford


4) Solar cells in the form of thin strips are mounted inside a frame. The cells line up with the edges of the solar concentrator and convert escaping light into electricity. In this prototype, a larger solar cell underneath captures red and infrared light that passes through the glass.

Credit: Porter Gifford


5) Artificial sunlight illuminates a solar concentrator attached to a single thin solar cell for testing.

Credit: Porter Gifford



The demand for ever faster, cheaper electronics is pushing the lithography-based manufacturing techniques standard in the semiconductor industry to their limits. Now researchers report a cheap, fast lithography technique that uses arrays of flexible polymer nano pens to precisely pattern millions of complex structures in parallel. The technique, which the researchers have used to create an integrated circuit (and lilliputian versions of the Olympics logo), can be employed to make lines whose sizes range from a few nanometers to millimeters thick.


Ablynx [Euronext: ABLX], a pioneer in the discovery and development of Nanobodies(R), a novel class of antibody-derived therapeutic proteins, today announced that it has entered into an agreement with Merck Serono, a division of Merck KGaA, Darmstadt, Germany, to co-discover and co-develop Nanobodies(R) against two targets in oncology and immunology. The agreement includes an upfront cash payment to Ablynx of EUR 10 million. Nanobodies(R) are a new class of therapeutic proteins that contain the unique structural and functional properties of naturally-occurring single domain antibodies. The partners will collaborate to research and develop Nanobody(R)-based therapeutics against two disease targets exploiting some of the key benefits Nanobodies(R) have over conventional antibodies and other fragments.


API Nanotronics Corp., a leading supplier of electronic components and nanotechnology research and development to the defense and communications sectors, today announced a $4.7 million order from Rockwell Collins for custom communication components.


In a surprise development that could have implications for powering electronics, cars and even the military, researchers at MIT have created the world’s first batteries constructed at the nano scale by microscopic viruses. A much-buzzed-about paper published in the Proceedings of the National Academy of Sciences earlier this month details the team’s success in creating two of the three parts of a working battery—the positively charged anode and the electrolyte. But team leader Angela Belcher told PM Wednesday that the team has been seriously working on cathode technology for the past year, creating several complete prototypes.


Dr Manfred Buck and his team at the University of St Andrews have accomplished one of the big quests in nanotechnology, opening up an exciting new development in tiny technology. The St Andrews researchers have developed a way of forming an easily modified network of molecules over a large area – the chemical technique provides an advantageous alternative to traditional methods which become increasingly cumbersome at the ultrasmall length scale.